
NAG Fortran Library Routine Document

D02NNF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02NNF is a reverse communication routine for integrating stiff systems of implicit ordinary differential
equations coupled with algebraic equations.

2 Specification

SUBROUTINE D02NNF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
1 ITOL, INFORM, YSAVE, NY2DIM, WKJAC, NWKJAC, JACPVT,
2 NJCPVT, IMON, INLN, IRES, IREVCM, LDERIV, ITASK,
3 ITRACE, IFAIL)

INTEGER NEQ, NEQMAX, ITOL, INFORM(23), NY2DIM, NWKJAC,
1 JACPVT(NJCPVT), NJCPVT, IMON, INLN, IRES, IREVCM,
2 ITASK, ITRACE, IFAIL
real T, TOUT, Y(NEQMAX), YDOT(NEQMAX), RWORK(50+4*NEQMAX),

1 RTOL(*), ATOL(*), YSAVE(NEQMAX,NY2DIM), WKJAC(NWKJAC)
LOGICAL LDERIV(2)

3 Description

D02NNF is a general purpose routine for integrating the initial value problem for a stiff system of implicit
ordinary differential equations coupled with algebraic equations, written in the form

Aðt; yÞy0 ¼ gðt; yÞ:
An outline of a typical calling program is given below:

C
C declarations
C

call linear algebra setup routine
call integrator setup routine
IREVCM=0

1000 CALL D02NNF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL,
ATOL, ITOL, INFORM, YSAVE, NY2DIM, WKJAC, NWKJAC, JACPVT,
NJCPVT, IMON, INLN, IRES, IREVCM, LDERIV,
ITASK, ITRACE, IFAIL)

IF (IREVCM.GT.0) THEN
IF (IREVCM.GT.7 .AND. IREVCM.LT.11) THEN

IF (IREVCM.EQ.8) THEN
supply the Jacobian matrix (i)

ELSE IF (IREVCM.EQ.9) THEN
perform monitoring tasks requested by the user (ii)

ELSE IF (IREVCM.EQ.10) THEN
indicates an unsuccessful step

END IF
ELSE

evaluate the residual (iii)
ENDIF
GO TO 1000

END IF
C
C post processing (optional linear algebra diagnostic call
C (sparse case only), optional integrator diagnostic call)
C

STOP
END

D02 – Ordinary Differential Equations D02NNF

[NP3546/20A] D02NNF.1



There are three major operations that may be required of the calling (sub)program on an intermediate
return (IREVCM 6¼ 0) from D02NNF; these are denoted (i), (ii) and (iii) above.

The following sections describe in greater detail exactly what is required of each of these operations.

(i) Supply the Jacobian matrix.

The user need only provide this facility if the parameter JCEVAL ¼ ’A’ (or ’F’ if using sparse matrix
linear algebra) in a call to the linear algebra setup routine. If the Jacobian matrix is to be evaluated
numerically by the integrator, then the remainder of section (i) can be ignored.

We must define the system of nonlinear equations which is solved internally by the integrator. The

time derivative, y0, has the form

y0 ¼ ðy� zÞ=ðhdÞ;
where h is the current step size and d is a parameter that depends on the integration method in use.
The vector y is the current solution and the vector z depends on information from previous time steps.

This means that ðd=ðdy0ÞÞð Þ ¼ ð1=ðhdÞÞðd=ðdyÞÞð Þ.
The system of nonlinear equations that is solved has the form

Aðt; yÞy0 � gðt; yÞ ¼ 0

but is solved in the form

rðt; yÞ ¼ 0;

where r is the function defined by

rðt; yÞ ¼ ðhdÞðAðt; yÞðy� zÞ=ðhdÞ � gðt; yÞÞ:

It is the Jacobian matrix @r
@y that the user must supply as follows:

@ri
@yj

¼ aijðt; yÞ þ hd
@

@yj

XNEQ
k¼1

aikðt; yÞy0k � giðt; yÞ
 !

;

where t, h and d are located in RWORK(19), RWORK(16) and RWORK(20) respectively and the
arrays Y and YDOT contain the current solution and time derivatives respectively. Only the non-zero
elements of the Jacobian need be set, since the locations where it is to be stored are preset to zero.

Hereafter in this document this operation will be referred to as JAC.

(ii) Perform tasks requested by the user.

This operation is essentially a monitoring function and additionally provides the opportunity of
changing the current values of Y, YDOT, HNEXT (the step size that the integrator proposes to take on
the next step), HMIN (the minimum step size to be taken on the next step), and HMAX (the
maximum step size to be taken on the next step). The scaled local error at the end of a time step may
be obtained by calling the real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ,ROWK(51+NEQMAX),RWORK(51),IFAIL)

C CHECK IFAIL BEFORE PROCEEDING

The following gives details of the location within the array RWORK of variables that may be of
interest to the user:

Variable Specification Location

TCURR the current value of the independent variable RWORK(19)
HLAST last step size successfully used by the integrator RWORK(15)
HNEXT step size that the integrator proposes to take on the next step RWORK(16)
HMIN minimum step size to be taken on the next step RWORK(17)
HMAX maximum step size to be taken on the next step RWORK(18)
NQU the order of the integrator used on the last step RWORK(10)

Users are advised to consult the description of MONITR in D02NGF for details on what optional
input can be made.

D02NNF NAG Fortran Library Manual

D02NNF.2 [NP3546/20A]



If either Y or YDOT are changed, then IMON must be set to 2 before return to D02NNF. If either of
the values HMIN or HMAX are changed, then IMON must be set � 3 before return to D02NNF. If
HNEXT is changed, then IMON must be set to 4 before return to D02NNF.

In addition the user can force D02NNF to evaluate the residual vector

Aðt; yÞy0 � gðt; yÞ
by setting IMON ¼ 0 and INLN ¼ 3 and then returning to D02NNF; on return to this monitoring
operation the residual vector will be stored in RWORKð50þ 2� NEQMAXþ iÞ, for
i ¼ 1; 2; . . . ;NEQ.

Hereafter in this document this operation will be referred to as MONITR.
(iii) Evaluate the residual.

This operation must evaluate the residual

r ¼ gðt; yÞ �Aðt; yÞy0 ð1Þ
in one case and

r ¼ �Aðt; yÞy0 ð2Þ
in another, where t is located in RWORK(19). The form of the residual that is returned is determined
by the value of IRES returned by D02NNF. If IRES ¼ �1, then the residual defined by equation (2)
above must be returned; if IRES ¼ 1, then the residual returned by equation (1) above must be
returned.

Hereafter in this document this operation will be referred to as RESID.

4 References

None.

5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-
entries, and a final exit, as indicated by the parameter IREVCM. Between intermediate exits and re-entries,
all parameters other than YDOT, RWORK, WKJAC, IMON, INLN and IRES must remain unchanged.

1: NEQ – INTEGER Input

On initial entry: the number of equations to be solved.

Constraint: NEQ � 1.

2: NEQMAX – INTEGER Input

On initial entry: a bound on the maximum number of equations to be solved during the integration.

Constraint: NEQMAX � NEQ.

3: T – real Input/Output

On initial entry: the value of the independent variable t. The input value of T is used only on the
first call as the initial point of the integration.

On final exit: the value at which the computed solution y is returned (usually at TOUT).

4: TOUT – real Input/Output

On initial entry: the next value of t at which a computed solution is desired. For the initial t, the
input value of TOUT is used to determine the direction of integration. Integration is permitted in
either direction (see also ITASK).

Constraint: TOUT 6¼ T.

D02 – Ordinary Differential Equations D02NNF

[NP3546/20A] D02NNF.3



On exit: TOUT is unaltered unless ITASK ¼ 6 and LDERIVð2Þ ¼ .TRUE. on entry (see also
ITASK and LDERIV) in which case TOUT will be set to the result of taking a small step at the start
of the integration.

5: Y(NEQMAX) – real array Input/Output

On initial entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of y must contain the vector of initial values.

On final exit: the computed solution vector evaluated at T (usually t ¼ TOUT).

6: YDOT(NEQMAX) – real array Input/Output

On initial entry: if LDERIVð1Þ ¼ .TRUE., YDOT must contain approximations to the time

derivatives y0 of the vector y. If LDERIVð1Þ ¼ .FALSE., then YDOT need not be set on entry.

On final exit: contains the time derivatives y0 of the vector y at the last integration point.

7: RWORK(50+4*NEQMAX) – real array Input/Output

On intermediate re-entry: must contain residual evaluations as described under the parameter
IREVCM.

On intermediate exit: contains information for JAC, RESID and MONITR operations as described
under Section 3 and the parameter IREVCM.

8: RTOL(*) – real array Input

Note: the dimension of the array RTOL must be at least 1 or NEQ (see ITOL).

On initial entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).

9: ATOL(*) – real array Input

Note: the dimension of the array ATOL must be at least 1 or NEQ (see ITOL).

On initial entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On initial entry: a value to indicate the form of the local error test. ITOL indicates to D02NNF
whether to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be
satisfied is kei=wik < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � jyij þ ATOLð1Þ
2 scalar vector RTOLð1Þ � jyij þ ATOLðiÞ
3 vector scalar RTOLðiÞ � jyij þ ATOLð1Þ
4 vector vector RTOLðiÞ � jyij þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: 1 � ITOL � 4.

11: INFORM(23) – INTEGER array Workspace

12: YSAVE(NEQMAX,NY2DIM) – real array Workspace
13: NY2DIM – INTEGER Input

On initial entry: the second dimension of the array YSAVE as declared in the (sub)program from
which D02NNF is called. An appropriate value for NY2DIM is described in the specifications of the

D02NNF NAG Fortran Library Manual

D02NNF.4 [NP3546/20A]



integrator setup routines D02MVF, D02NVF and D02NWF. This value must be the same as that
supplied to the integrator setup routine.

14: WKJAC(NWKJAC) – real array Input/Output

On intermediate re-entry: elements of the Jacobian as defined under the description of IREVCM. If
a numerical Jacobian was requested then WKJAC is used for workspace.

On intermediate exit: the Jacobian is overwritten.

15: NWKJAC – INTEGER Input

On initial entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NNF is called. The actual size depends on the linear algebra method used. An appropriate
value for NWKJAC is described in the specifications of the linear algebra setup routines D02NSF,
D02NTF and D02NUF for full, banded and sparse matrix linear algebra respectively. This value
must be the same as that supplied to the linear algebra setup routine.

16: JACPVT(NJCPVT) – INTEGER array Workspace
17: NJCPVT – INTEGER Input

On initial entry: the dimension of the array JACPVT as declared in the (sub)program from which
D02NNF is called. The actual size depends on the linear algebra method used. An appropriate
value for NJCPVT is described in the specifications of the linear algebra setup routines D02NTF
and D02NUF for banded and sparse matrix linear algebra respectively. This value must be the same
as that supplied to the linear algebra setup routine. When full matrix linear algebra is chosen, the
array JACPVT is not used and hence NJCPVT should be set to 1.

18: IMON – INTEGER Input/Output

On intermediate exit: used to pass information between D02NNF and the MONITR operation (see
Section 3). With IREVCM ¼ 9, IMON contains a flag indicating under what circumstances the
return from D02NNF occurred:

IMON ¼ �2

Exit from D02NNF after IRES ¼ 4 (set in RESID operation (see Section 3) caused an early
termination (this facility could be used to locate discontinuities).

IMON ¼ �1

The current step failed repeatedly.

IMON ¼ 0

Exit from D02NNF after a call to the internal nonlinear equation solver.

IMON ¼ 1

The current step was successful.

On intermediate re-entry: IMON may be reset to determine subsequent action in D02NNF.

IMON ¼ �2

Integration is to be halted. A return will be made from D02NNF to the calling (sub)program
with IFAIL ¼ 12.

IMON ¼ �1

Allow D02NNF to continue with its own internal strategy. The integrator will try up to three
restarts unless IMON 6¼ �1.

IMON ¼ 0

Return to the internal nonlinear equation solver, where the action taken is determined by the
value of INLN (see below).

D02 – Ordinary Differential Equations D02NNF

[NP3546/20A] D02NNF.5



IMON ¼ 1

Normal exit to D02NNF to continue integration.

IMON ¼ 2

Restart the integration at the current time point. The integrator will restart from order 1 when

this option is used. The internal initialisation module solves for new values of y and y0 by
using the values supplied in Y and YDOT by the MONITR operation (see Section 3) as
initial estimates.

IMON ¼ 3

Try to continue with the same step size and order as was to be used before entering the
MONITR operation (see Section 3). HMIN and HMAX may be altered if desired.

IMON ¼ 4

Continue the integration but using a new value HNEXT and possibly new values of HMIN
and HMAX.

19: INLN – INTEGER Input/Output

On intermediate re-entry: with IMON ¼ 0 and IREVCM ¼ 9, INLN specifies the action to be taken
by the internal nonlinear equation solver. By setting INLN ¼ 3 and returning to D02NNF, the
residual vector is evaluated and placed in RWORKð50þ 2� NEQMAXþ iÞ, for i ¼ 1; 2; . . . ;NEQ
and then the MONITR operation (see Section 3) is invoked again. At present this is the only option
available: INLN must not be set to any other value.

On intermediate exit: contains a flag indicating the action to be taken, if any, by the internal
nonlinear equation solver.

20: IRES – INTEGER Input/Output

On intermediate exit: with IREVCM ¼ 1, 2, 3, 4, 5, 6, 7 or 11 IRES specifies the form of the
residual to be returned by the RESID operation (see Section 3).

If IRES ¼ 1, then r ¼ gðt; yÞ � Aðt; yÞy0 must be returned.

If IRES ¼ �1, then r ¼ �Aðt; yÞy0 must be returned.

On intermediate re-entry: IRES should be unchanged unless one of the following actions is required
of D02NNF in which case IRES should be set accordingly.

IRES ¼ 2

Indicates to D02NNF that control should be passed back immediately to the calling
(sub)program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3

Indicates to D02NNF that an error condition has occurred in the solution vector, its time
derivative or in the value of t. The integrator will use a smaller time step to try to avoid this
condition. If this is not possible D02NNF returns to the calling (sub)program with the error
indicator set to IFAIL ¼ 7.

IRES ¼ 4

Indicates to D02NNF to stop its current operation and to enter the MONITR operation (see
Section 3) immediately.

21: IREVCM – INTEGER Input/Output

On initial entry: IREVCM must contain 0.

On intermediate re-entry: should remain unchanged.

D02NNF NAG Fortran Library Manual

D02NNF.6 [NP3546/20A]



On intermediate exit: indicates what action the user must take before re-entering D02NNF. The
possible exit values of IREVCM are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 which should be interpreted as
follows:

IREVCM ¼ 1, 2, 3, 4, 5, 6, 7, 11

Indicates that a RESID operation (see Section 3) is required: the user must supply the residual
of the system. For each of these values of IREVCM, yi is located in YðiÞ,
i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 1, 3, 6 or 11, y0i is located in YDOTðiÞ and ri should be stored in
RWORKð50þ 2� NEQMAXþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 2, y0i is located in RWORKð50þ NEQMAXþ iÞ and ri should be stored in
RWORKð50þ 2� NEQMAXþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 4 or 7, y0i is located in YDOTðiÞ and ri should be stored in
RWORKð50þ NEQMAXþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 5, y0i is located in RWORKð50þ 2� NEQMAXþ iÞ and ri should be
stored in YDOTðiÞ, for i ¼ 1; 2; . . . ;NEQ.

IREVCM ¼ 8

Indicates that a JAC operation (see Section 3) is required: the user must supply the Jacobian
matrix.

If full matrix linear algebra is being used, then the ði; jÞth element of the Jacobian must be
stored in WKJACððj� 1Þ � NEQþ iÞ.
If banded matrix linear algebra is being used, then the ði; jÞth element of the Jacobian must
be stored in WKJACðði� 1Þ �mB þ kÞ, where mB ¼ mL þmU þ 1 and
k ¼ minðmL � iþ 1; 0Þ þ j; here mL and mU are the number of sub-diagonals and super-
diagonals, respectively, in the band.

If sparse matrix linear algebra is being used, then D02NRF must be called to determine
which column of the Jacobian is required and where it should be stored.

CALL D02NRF(J, IPLACE, INFORM)

will return in J the number of the column of the Jacobian that is required and will set
IPLACE ¼ 1 or 2. If IPLACE ¼ 1, then the ði; jÞth element of the Jacobian must
be stored in RWORKð50þ 2� NEQMAXþ iÞ; otherwise it must be stored in
RWORKð50þ NEQMAXþ iÞ.

IREVCM ¼ 9

Indicates that a MONITR operation (see Section 3) can be performed.

IREVCM ¼ 10

Indicates that the current step was not successful, due to error test failure or convergence test
failure. The only information supplied to the user on this return is the current value of the
variable t, located in RWORK(19). No values must be changed before re-entering D02NNF;
this facility enables the user to determine the number of unsuccessful steps.

On final exit: IREVCM ¼ 0 indicating that the user-specified task has been completed or an error
has been encountered (see descriptions for ITASK and IFAIL).

Constraint: 0 � IREVCM � 11.

22: LDERIV(2) – LOGICAL array Input/Output

On initial entry: LDERIV(1) must be set to .TRUE. if the user has supplied both an initial y and an

initial y0. LDERIV(1) must be set to .FALSE. if only the initial y has been supplied.

LDERIV(2) must be set to .TRUE. if the integrator is to use a modified Newton method to evaluate

the initial y and y0. Note that y and y0, if supplied, are used as initial estimates. This method
involves taking a small step at the start of the integration, and if ITASK ¼ 6 on entry, T and TOUT

D02 – Ordinary Differential Equations D02NNF

[NP3546/20A] D02NNF.7



will be set to the result of taking this small step. LDERIV(2) must be set to .FALSE. if the

integrator is to use functional iteration to evaluate the initial y and y0, and if this fails a modified
Newton method will then be attempted. LDERIVð2Þ ¼ .TRUE. is recommended if there are

implicit equations or the initial y and y0 are zero.

On final exit: LDERIV(1) is normally unchanged. However if ITASK ¼ 6 and internal initialisation
was successful then LDERIVð1Þ ¼ .TRUE..

LDERIVð2Þ ¼ .TRUE., if implicit equations were detected. Otherwise LDERIVð2Þ ¼ .FALSE..

23: ITASK – INTEGER Input

On initial entry: the task to be performed by the integrator. The permitted values for ITASK and
their meanings are detailed below:

ITASK ¼ 1

Normal computation of output values of yðtÞ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2

Take one step only and return.

ITASK ¼ 3

Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4

Normal computation of output values of yðtÞ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
prior to the first call to the integrator, or specified in the optional input routine prior to a
continuation call. TCRIT may be equal to or beyond TOUT, but not before it in the direction
of integration.

ITASK ¼ 5

Take one step only and return, without passing TCRIT. TCRIT must be specified under
ITASK ¼ 4.

ITASK ¼ 6

The integrator will solve for the initial values of y and y0 only and then return to the calling
(sub)program without doing the integration. This option can be used to check the initial

values of y and y0. Functional iteration or a ‘small’ backward Euler method used in
conjunction with a damped Newton iteration is used to calculate these values (see LDERIV
above). Note that if a backward Euler step is used then the value of t will have been
advanced a short distance from the initial point.

Note: if D02NNF is recalled with a different value of ITASK (and TOUT altered) then the
initialisation procedure is repeated, possibly leading to different initial conditions.

Constraint: 1 � ITASK � 6.

24: ITRACE – INTEGER Input

On initial entry: the level of output that is printed by the integrator. ITRACE may take the value
�1, 0, 1, 2 or 3. If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is
assumed. If ITRACE ¼ �1, no output is generated. If ITRACE ¼ 0, only warning messages are
printed on the current error message unit (see X04AAF). If ITRACE > 0, then warning messages
are printed as above, and on the current advisory message unit (see X04ABF) output is generated
which details Jacobian entries, the nonlinear iteration and the time integration. The advisory
messages are given in greater detail the larger the value of ITRACE.

D02NNF NAG Fortran Library Manual

D02NNF.8 [NP3546/20A]



25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, the integrator detected an illegal input or that a linear algebra and/or integrator setup
routine has not been called prior to the call to the integrator. If ITRACE � 0, the form of the error
will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested task,
but the integration was successful as far as T. The problem may have a singularity, or the local
error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. This may be caused by an inaccurate Jacobian
matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see description of ITOL). Pure relative
error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now vanished. The
integration was successful as far as T.

IFAIL ¼ 7

The RESID operation (see Section 3) set the error flag IRES ¼ 3 continually despite repeated
attempts by the integrator to avoid this.

IFAIL ¼ 8

LDERIVð1Þ ¼ :FALSE: on entry but the internal initialisation routine was unable to initialise y0

(more detailed information may be directed to the current error message unit, see X04AAF).

D02 – Ordinary Differential Equations D02NNF

[NP3546/20A] D02NNF.9



IFAIL ¼ 9

A singular Jacobian @r
@y has been encountered. The user should check the problem formulation and

Jacobian calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

The RESID operation (see Section 3) signalled the integrator to halt the integration and return by
setting IRES ¼ 2. Integration was successful as far as T.

IFAIL ¼ 12

The MONITR operation (see Section 3) set IMON ¼ �2 and so forced a return but the integration
was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and ATOL
is unlikely to produce any change in the computed solution. (Only applies when the user is not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that the routine is unable to start the integration.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the parameters RTOL and
ATOL, and to a much lesser extent by the choice of norm. Users are advised to use scalar error control
unless the components of the solution are expected to be poorly scaled. For the type of decaying solution
typical of many stiff problems, relative error control with a small absolute error threshold will be most
appropriate (that is the user is advised to choose ITOL ¼ 1 with ATOL(1) small but positive).

8 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem; also on the type of linear algebra being used. For further
details see Section 8 of the documents for D02NGF (full matrix), D02NHF (banded matrix) or D02NJF
(sparse matrix).

In general the user is advised to choose the Backward Differentiation Formula option (setup routine

D02NVF) but if efficiency is of great importance and especially if it is suspected that @
@y ðA

�1gÞ has

complex eigenvalues near the imaginary axis for some part of the integration, the user should try the
BLEND option (setup routine D02NWF).

9 Example

We solve the well-known stiff Robertson problem written as a differential system in implicit form

r1 ¼ ða0 þ b0 þ c0Þ
r2 ¼ 0:04a� 1:0E4bc � 3:0E7b2 � b0

r3 ¼ 3:0E7b2 � c0

over the range [0,10] with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 and with scalar error control
(ITOL ¼ 1). We integrate to the first internal integration point past TOUT ¼ 10:0 (ITASK ¼ 3), using a
BDF method (setup routine D02NVF) and a modified Newton method. We treat the Jacobian as sparse
(setup routine D02NUF) and we calculate it analytically. In this program we also illustrate the monitoring

D02NNF NAG Fortran Library Manual

D02NNF.10 [NP3546/20A]



of step failures (IREVCM ¼ 10) and forcing of a return when the component a falls below 0.9 in the
evaluation of the residual by setting IRES ¼ 2.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D02NNF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, NEQMAX, NRW, NINF, NJCPVT, NWKJAC, NIA, NJA,

+ MAXORD, NY2DIM, MAXSTP, MXHNIL
PARAMETER (NEQ=3,NEQMAX=NEQ,NRW=50+4*NEQMAX,NINF=23,

+ NJCPVT=150,NWKJAC=100,NIA=1,NJA=1,MAXORD=5,
+ NY2DIM=MAXORD+1,MAXSTP=200,MXHNIL=5)
INTEGER LACORB, LSAVRB
PARAMETER (LACORB=50+NEQMAX,LSAVRB=LACORB+NEQMAX)
real H0, HMAX, HMIN, TCRIT
PARAMETER (H0=1.0e-4,HMAX=10.0e0,HMIN=1.0e-10,TCRIT=0.0e0)
LOGICAL PETZLD
PARAMETER (PETZLD=.TRUE.)
real ETA, U, SENS
PARAMETER (ETA=1.0e-4,U=0.1e0,SENS=1.0e-6)
LOGICAL LBLOCK
PARAMETER (LBLOCK=.TRUE.)

* .. Local Scalars ..
real H, HU, HXD, T, TCUR, TOLSF, TOUT
INTEGER I, ICALL, IFAIL, IGROW, IMON, IMXER, INLN,

+ IPLACE, IRES, IREVCM, ISPLIT, ITASK, ITOL,
+ ITRACE, J, LACOR1, LACOR2, LACOR3, LIWREQ,
+ LIWUSD, LRWREQ, LRWUSD, LSAVR1, LSAVR2, LSAVR3,
+ NBLOCK, NFAILS, NGP, NITER, NJE, NLU, NNZ, NQ,
+ NQU, NRE, NST

* .. Local Arrays ..
real ATOL(NEQMAX), CONST(6), RTOL(NEQMAX), RWORK(NRW),

+ WKJAC(NWKJAC), Y(NEQMAX), YDOT(NEQMAX),
+ YSAVE(NEQMAX,NY2DIM)
INTEGER IA(NIA), INFORM(NINF), JA(NJA), JACPVT(NJCPVT)
LOGICAL ALGEQU(NEQMAX), LDERIV(2)

* .. External Subroutines ..
EXTERNAL D02NNF, D02NRF, D02NUF, D02NVF, D02NXF, D02NYF,

+ X04ABF
* .. Executable Statements ..

WRITE (NOUT,*) ’D02NNF Example Program Results’
WRITE (NOUT,*)
CALL X04ABF(1,NOUT)

*
* Integrate towards TOUT stopping at the first mesh point beyond
* TOUT (ITASK=3) using the B.D.F. formulae with a Newton method.
* Employ scalar tolerances and the Jacobian is supplied, but its
* structure is evaluated internally by calls to the Jacobian
* forming part of the program (IREVCM=8). Default values for the
* array CONST are used. Also count the number of step failures
* (IREVCM=10).
*

T = 0.0e0
TOUT = 10.0e0
ITASK = 3
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
LDERIV(1) = .FALSE.
LDERIV(2) = .FALSE.
ITOL = 1
RTOL(1) = 1.0e-4
ATOL(1) = 1.0e-7

D02 – Ordinary Differential Equations D02NNF

[NP3546/20A] D02NNF.11



DO 20 I = 1, 6
CONST(I) = 0.0e0

20 CONTINUE
ISPLIT = 0
NFAILS = 0
IFAIL = 0

*
CALL D02NVF(NEQMAX,NY2DIM,MAXORD,’Newton’,PETZLD,CONST,TCRIT,HMIN,

+ HMAX,H0,MAXSTP,MXHNIL,’Average-l2’,RWORK,IFAIL)
CALL D02NUF(NEQ,NEQMAX,’Analytical’,NWKJAC,IA,NIA,JA,NJA,JACPVT,

+ NJCPVT,SENS,U,ETA,LBLOCK,ISPLIT,RWORK,IFAIL)
*
* Soft fail and error messages only

IREVCM = 0
IFAIL = 1
ITRACE = 0

*
LACOR1 = LACORB + 1
LACOR2 = LACORB + 2
LACOR3 = LACORB + 3
LSAVR1 = LSAVRB + 1
LSAVR2 = LSAVRB + 2
LSAVR3 = LSAVRB + 3
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
WRITE (NOUT,99999) T, (Y(I),I=1,NEQ)

*
40 CONTINUE

*
CALL D02NNF(NEQ,NEQMAX,T,TOUT,Y,YDOT,RWORK,RTOL,ATOL,ITOL,INFORM,

+ YSAVE,NY2DIM,WKJAC,NWKJAC,JACPVT,NJCPVT,IMON,INLN,
+ IRES,IREVCM,LDERIV,ITASK,ITRACE,IFAIL)

*
IF (IREVCM.GT.0) THEN

IF (IREVCM.EQ.1 .OR. IREVCM.EQ.3 .OR. IREVCM.EQ.6 .OR.
+ IREVCM.EQ.11) THEN

* Equivalent to RESID evaluation in forward communication
* routines

RWORK(LSAVR1) = -YDOT(1) - YDOT(2) - YDOT(3)
RWORK(LSAVR2) = -YDOT(2)
RWORK(LSAVR3) = -YDOT(3)
IF (IRES.EQ.1) THEN

RWORK(LSAVR1) = 0.0e0 + RWORK(LSAVR1)
RWORK(LSAVR2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) -

+ 3.0e7*Y(2)*Y(2) + RWORK(LSAVR2)
RWORK(LSAVR3) = 3.0e7*Y(2)*Y(2) + RWORK(LSAVR3)

END IF
ELSE IF (IREVCM.EQ.2) THEN

* Equivalent to RESID evaluation in forward communication
* routines

RWORK(LSAVR1) = -RWORK(LACOR1) - RWORK(LACOR2) -
+ RWORK(LACOR3)

RWORK(LSAVR2) = -RWORK(LACOR2)
RWORK(LSAVR3) = -RWORK(LACOR3)

ELSE IF (IREVCM.EQ.4 .OR. IREVCM.EQ.7) THEN
* Equivalent to RESID evaluation in forward communication
* routines

RWORK(LACOR1) = -YDOT(1) - YDOT(2) - YDOT(3)
RWORK(LACOR2) = -YDOT(2)
RWORK(LACOR3) = -YDOT(3)
IF (IRES.EQ.1) THEN

RWORK(LACOR1) = 0.0e0 + RWORK(LACOR1)
RWORK(LACOR2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) -

+ 3.0e7*Y(2)*Y(2) + RWORK(LACOR2)
RWORK(LACOR3) = 3.0e7*Y(2)*Y(2) + RWORK(LACOR3)

END IF
ELSE IF (IREVCM.EQ.5) THEN

* Equivalent to RESID evaluation in forward communication
* routines

YDOT(1) = 0.0e0 - RWORK(LSAVR1) - RWORK(LSAVR2) -
+ RWORK(LSAVR3)

YDOT(2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) - 3.0e7*Y(2)*(2) -

D02NNF NAG Fortran Library Manual

D02NNF.12 [NP3546/20A]



+ RWORK(LSAVR2)
YDOT(3) = 3.0e7*Y(2)*Y(2) - RWORK(LSAVR3)

ELSE IF (IREVCM.EQ.8) THEN
* Equivalent to JAC evaluation in forward communication
* routines

CALL D02NRF(J,IPLACE,INFORM)
*

HXD = RWORK(16)*RWORK(20)
*

IF (IPLACE.LT.2) THEN
IF (J.LT.2) THEN

RWORK(LSAVR1) = 1.0e0 - HXD*(0.0e0)
RWORK(LSAVR2) = 0.0e0 - HXD*(0.04e0)

* RWORK(LSAVR3) = 0.0 - HXD*(0.0)
ELSE IF (J.EQ.2) THEN

RWORK(LSAVR1) = 1.0e0 - HXD*(0.0e0)
RWORK(LSAVR2) = 1.0e0 - HXD*(-1.0e4*Y(3)-6.0e7*Y(2))
RWORK(LSAVR3) = 0.0e0 - HXD*(6.0e7*Y(2))

ELSE IF (J.GT.2) THEN
RWORK(LSAVR1) = 1.0e0 - HXD*(0.0e0)
RWORK(LSAVR2) = 0.0e0 - HXD*(-1.0e4*Y(2))
RWORK(LSAVR3) = 1.0e0 - HXD*(0.0e0)

END IF
ELSE

IF (J.LT.2) THEN
RWORK(LACOR1) = 1.0e0 - HXD*(0.0e0)
RWORK(LACOR2) = 0.0e0 - HXD*(0.04e0)

* RWORK(LACOR3) = 0.0 - HXD*(0.0)
ELSE IF (J.EQ.2) THEN

RWORK(LACOR1) = 1.0e0 - HXD*(0.0e0)
RWORK(LACOR2) = 1.0e0 - HXD*(-1.0e4*Y(3)-6.0e7*Y(2))
RWORK(LACOR3) = 0.0e0 - HXD*(6.0e7*Y(2))

ELSE IF (J.GT.2) THEN
RWORK(LACOR1) = 1.0e0 - HXD*(0.0e0)
RWORK(LACOR2) = 0.0e0 - HXD*(-1.0e4*Y(2))
RWORK(LACOR3) = 1.0e0 - HXD*(0.0e0)

END IF
END IF

* Step failure
ELSE IF (IREVCM.EQ.10) THEN

NFAILS = NFAILS + 1
END IF
GO TO 40

ELSE
IF (IFAIL.EQ.0) THEN

WRITE (NOUT,99999) T, (Y(I),I=1,NEQ)
*

CALL D02NYF(NEQ,NEQMAX,HU,H,TCUR,TOLSF,RWORK,NST,NRE,NJE,
+ NQU,NQ,NITER,IMXER,ALGEQU,INFORM,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99997) ’ HUSED = ’, HU, ’ HNEXT = ’, H,

+ ’ TCUR = ’, TCUR
WRITE (NOUT,99996) ’ NST = ’, NST, ’ NRE = ’, NRE,

+ ’ NJE = ’, NJE
WRITE (NOUT,99996) ’ NQU = ’, NQU, ’ NQ = ’, NQ,

+ ’ NITER = ’, NITER
WRITE (NOUT,99995) ’ Max err comp = ’, IMXER,

+ ’ No. of failed steps = ’, NFAILS
ICALL = 0

*
CALL D02NXF(ICALL,LIWREQ,LIWUSD,LRWREQ,LRWUSD,NLU,NNZ,NGP,

+ ISPLIT,IGROW,LBLOCK,NBLOCK,INFORM)
*

WRITE (NOUT,*)
WRITE (NOUT,99994) ’ NJCPVT (required ’, LIWREQ, ’ used ’,

+ LIWUSD, ’)’
WRITE (NOUT,99994) ’ NWKJAC (required ’, LRWREQ, ’ used ’,

+ LRWUSD, ’)’
WRITE (NOUT,99993) ’ No. of LU-decomps ’, NLU,

+ ’ No. of nonzeros ’, NNZ

D02 – Ordinary Differential Equations D02NNF

[NP3546/20A] D02NNF.13



WRITE (NOUT,99995) ’ No. of FCN calls to form Jacobian ’,
+ NGP, ’ Try ISPLIT ’, ISPLIT

WRITE (NOUT,99992) ’ Growth est ’, IGROW,
+ ’ No. of blocks on diagonal ’, NBLOCK

ELSE IF (IFAIL.EQ.10) THEN
ICALL = 1

*
CALL D02NXF(ICALL,LIWREQ,LIWUSD,LRWREQ,LRWUSD,NLU,NNZ,NGP,

+ ISPLIT,IGROW,LBLOCK,NBLOCK,INFORM)
*

WRITE (NOUT,*)
WRITE (NOUT,99994) ’ NJCPVT (required ’, LIWREQ, ’ used ’,

+ LIWUSD, ’)’
WRITE (NOUT,99994) ’ NWKJAC (required ’, LRWREQ, ’ used ’,

+ LRWUSD, ’)’
ELSE

WRITE (NOUT,*)
WRITE (NOUT,99998) ’Exit D02NNF with IFAIL = ’, IFAIL,

+ ’ and T = ’, T
END IF

END IF
STOP

*
99999 FORMAT (1X,F8.3,3(F13.5,2X))
99998 FORMAT (1X,A,I2,A,e12.5)
99997 FORMAT (1X,A,e12.5,A,e12.5,A,e12.5)
99996 FORMAT (1X,A,I6,A,I6,A,I6)
99995 FORMAT (1X,A,I4,A,I4)
99994 FORMAT (1X,A,I8,A,I8,A)
99993 FORMAT (1X,A,I4,A,I8)
99992 FORMAT (1X,A,I8,A,I4)

END

9.2 Program Data

None.

9.3 Program Results

D02NNF Example Program Results

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000

WARNING... EQUATION(=I1) AND POSSIBLY OTHER EQUATIONS ARE
IMPLICIT AND IN CALCULATING THE INITIAL VALUES THE EQNS
WILL BE TREATED AS IMPLICIT.
IN ABOVE MESSAGE I1 = 1

10.488 0.83759 0.00002 0.16239

HUSED = 0.60471E+00 HNEXT = 0.60471E+00 TCUR = 0.10488E+02
NST = 65 NRE = 163 NJE = 14
NQU = 3 NQ = 3 NITER = 154
Max err comp = 3 No. of failed steps = 0

NJCPVT (required 74 used 150)
NWKJAC (required 16 used 77)
No. of LU-decomps 14 No. of nonzeros 5
No. of FCN calls to form Jacobian 0 Try ISPLIT 73
Growth est 862 No. of blocks on diagonal 3

D02NNF NAG Fortran Library Manual

D02NNF.14 (last) [NP3546/20A]


	D02NNF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	NEQ
	NEQMAX
	T
	TOUT
	Y
	YDOT
	RWORK
	RTOL
	ATOL
	ITOL
	INFORM
	YSAVE
	NY2DIM
	WKJAC
	NWKJAC
	JACPVT
	NJCPVT
	IMON
	INLN
	IRES
	IREVCM
	LDERIV
	ITASK
	ITRACE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9
	IFAIL = 10
	IFAIL = 11
	IFAIL = 12
	IFAIL = 13
	IFAIL = 14

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities


